Theoretical Investigation of the Compact Dielectric Polymer using PVDF-HFP

Authors

  • Mainpal
  • Gaurav Kumar Bharti

Abstract

Reducing the size of the dielectric material is a big problem to prepare next-generation dielectric gadget. In this paper, we proposedsolution of this problem that affects the size of the dielectric particles. Due to the large size of 140nm, a good permittivity has been detected. This has been explained by the property of a material like structure, model, lattice size, or shape and having a very large permittivity. We observed the permittivity fortheapprox size of about 1.1µm, due to the domain – wall role and boundary effect. The proposed work will highlight necessity to make devices that have a very small size and may give very large production with the help of PVDF-HFP.

References

B. Wenyao Yang. "Effect of solvent on the energy storage property of poly(vinylidene fluoridehexafluoropropylene)", Materials Research Express, 2020

C. Takuya HOSHINA. "Size effect of barium titanate: fine particles and ceramics" , Journal of the Ceramic Society of Japan, 2013

D. Prateek, Vijay Kumar Thakur, Raju Kumar Gupta. "Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects" , Chemical Reviews, 2016

E. J. Yang, J. Zhang, C. Y. Liang, M. Wang, P. F. Zhao, M. M. Liu,

a. J. W. Liu and R. C. Che, ACS Appl. Mater. Interfaces, 2013, 5,7146–7151.

F. Yılmaz, Onur, Aurica P. Chiriac, Catalina Natalia Cheaburu, Loredana E. Nita, Gürbüz Gülümser, Donatella Duraccio, SossioCimmino, and Cornelia Vasile. "Nanocomposites Based on Montmorillonite/Acrylic Copolymer forAqueous Coating of Soft Surfaces" , Solid State Phenomena, 2009.

G. W. Z. Ma, J. Zhang, S. J. Chen and X. L. Wang, Appl. Surf. Sci.,

a. 2008, 254, 5635–5642.

H. Chongyang Yang, Minqiang Sun, Xi Wang, Gengchao Wang. "A Novel Flexible Supercapacitor Based on Cross-Linked PVDFHFP Porous Organogel Electrolyte and Carbon Nanotube Paper@π-Conjugated Polymer Film Electrodes" , ACS Sustainable Chemistry & Engineering, 2015

I. L. Krishna Bharat, G. Seeta Rama Raju, Jae Su Yu. "Red and green colors emitting sphericalshaped calcium molybdate nanophosphors for enhanced latent fingerprint detection" , Scientific Reports, 2017

J. Huiying Chu, Chao Fu, Jingjing Xu, Weiyan Li, Jing Qian, Wei Nie, Xianghai Ran. "Carbondoped inorganic nanoassemblies as fillers to tailor the dielectric and energy storage properties in polymer-based nanocomposites" , Materials & Design, 2020

K. Luo, Hang, Dou Zhang, Chao Jiang, Xi Yuan, Chao Chen, and Kechao Zhou. "Improved Dielectric Properties and Energy Storage Density of P(VDF-HFP) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3" , ACS Applied Materials & Interfaces

L. Sheng Peng. "Synthesis and Characterization of Monodisperse Hollow Fe3O4

M. N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa and A. Gupta, J. Phys. Chem. C, 2008, 112,8634–8642.

N. F. Liu, R. M. Huo, X. Y. Huang, Q. Q. Lei and P. K. Jiang, IEEE

a. Trans. Dielectr. Electr. Insul., 2014, 21, 1446–1454.

O. T. W. Odom, J.-L. Huang, P. Kim and C. M. Lieber, J. Phys. Chem. B, 2000, 104, 2794–2809.

P. M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham and H. Park, Science,2001,291,283–285.

Q. Onimisi MY, Ikyumbur TJ. Comparative analysis of dielectric constant and loss factor of pure Butan-1-ol and ethanol. American Journal of Condensed Mtter Physics. 2015a;5(3).

R. S. Wada, T. Hoshina, H. Yasuno, S.-M. Nam, H. Kakemoto, T Tsurumi and M. Yashima, J. KoreanPhys.Soc.,46,303¬307(2005).

S. T. Hoshina, H. Kakemoto, T. Tsurumi, S. Wada, M. Yashima K. Kato and M. Takata, Key Eng. Mater.,301,239¬242(2006).

T. H. Hayashi, T. Noguchi, N. M. Islam, Y. Hakuta, Y. Imai and N. Ueno, J. Cryst. Growth, 2010, 312,1968–1972.

U. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Gunter, M. H.Garrett, D. Rytz, Y. Zhu and X. Wu: Phys. Rev. B 50 (1994) 5941.

V. K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi, Y. Gotoh and Y. Cho, Appl. Phys.Lett.,2003,82,433–435.

W. Laurent, M., Vuillermoz, P.L., “Conductivitéthermique des solides”, Techniquesdel’ingénieur, Constantesphysico-chimiques, K 420, 1993, pp. 1–30

X. Gou, J., Dai, Y., Li, S., & Tao, W. (2015). International Journal of Heat and Mass Transfer Numerical study of effective thermal conductivities of plain woven composites by unit cells of differentsizes.HEATANDMASSTRANSFER,829840.doi:10.1016/j.ijheatmasstransfer.2015

Y. Zain-ul-abdein, M., Raza, K., Ahmad, F., &Mabrouki, T. (2015). Numerical investigation of the effect of interfacialthermal resistance upon the thermal conductivity of copper / diamond composites.JMADE,86,248–258.doi:10.1016/j.matdes.2015.07.059

Z. Zhou, Y., Hyuga, H., Kusano, D., Yoshizawa, Y., Ohji, T., &Hirao, K. (2015). Journal of Asian CeramicSocietiesDevelopment of high-thermal-conductivity silicon nitride ceramics. Integrative Medicine Research, 3(3), 221–229.doi:10.1016/j.jascer.2015.03.003

AA. Zhu, M.; Huang, X.; Yang, K.; Zhai, X.; Zhang, J.; He, J.; Jiang, P. Energy storage in ferroelectric polymernanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: Understanding the role ofpolymer shells in the interfacial regions. ACS Appl. Mater. Interfaces 2014, 6, 19644–19654.

BB. Xie, L.; Huang, X.; Yang, K.; Li, S.; Jiang, P. “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocompositeswith high dielectric constant and high thermal conductivity for energy storage and thermal managementapplications. J. Mater. Chem. A 2014, 2, 5244–5251.

Downloads

Published

2024-02-28

How to Cite

Mainpal, & Gaurav Kumar Bharti. (2024). Theoretical Investigation of the Compact Dielectric Polymer using PVDF-HFP. Journal Punjab Academy of Sciences, 23, 234–243. Retrieved from http://jpas.in/index.php/home/article/view/72