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ABSTRACT 
This review article explores the critical role of deep learning in the automated detection and classification of maize leaf diseases, which 

significantly threaten global agricultural productivity. Traditional methods of disease identification typically depend on manual 

inspections, which can be time-consuming and susceptible to human error, resulting in inconsistent outcomes. In contrast, the proposed 

deep learning framework employs convolutional neural networks (CNNs) and transfer learning techniques that enhance diagnostic 

accuracy while reducing computational requirements. By utilizing a comprehensive dataset of labeled maize leaf images, the model 

effectively distinguishes between healthy and diseased leaves, targeting common afflictions such as maize rust, northern leaf blight, and 

gray leaf spot. The study emphasizes the model's adaptability to varying environmental conditions and its superior performance 

compared to conventional machine learning approaches. Furthermore, the article addresses the challenges encountered in real-world 

agricultural settings, including issues related to variable lighting and complex backgrounds that can obscure disease symptoms. It 

underscores the necessity for high-resolution, meticulously labeled images and advanced technology-driven solutions to enable rapid 

and precise disease detection. Such advancements are crucial for improving crop management and enhancing food security. Ultimately, 

this review aims to democratize access to effective diagnostic tools, empowering farmers and stakeholders in the agricultural sector with 

the resources needed to combat maize leaf diseases effectively. By fostering the adoption of these innovative technologies, the study 

contributes to the ongoing efforts to enhance agricultural resilience and productivity in the face of pressing global challenges. 

 

KEYWORDS: Maize Leaf Disease Detection, Deep Learning, Convolution Neural Network (CNNs), Image 

Classification, Agricultural Automation. 

 

INTRODUCTION 
Maize is one of the most crucial staple crops 

worldwide, providing sustenance for millions as a key 

food source and feedstock in various agro-industries. Its 

role as a primary contributor to global food security 

means that maize productivity directly impacts the 

economic stability of agricultural sectors, particularly 

in regions where it forms a significant part of local diets 

and export markets (Yoshida and Iizumi 2023; Ocwa et 

al. 2023). As one of the most widely cultivated crops, 

maize serves not only as a staple food for countless 

individuals but also as a vital ingredient in livestock 

feed and various industrial applications. Its significance 

is highlighted by its cultivation across diverse 

geographical regions, from smallholder farms in 

developing nations to extensive commercial operations 

in developed economies. However, maize production is 

persistently threatened by numerous leaf diseases that 

can severely compromise crop health, diminish yields, 

and disrupt food supply chains. Diseases such as 

Northern Corn Leaf Blight, Gray Leaf Spot, and 

Common Rust pose significant challenges to maize 

growers, often requiring prompt and precise detection 

to mitigate risks to productivity and sustainability 

(Mattoo et al. 2023; W. Zhu et al. 2023). 

To tackle these challenges, the implementation of 

advanced automated methods for early disease 

detection is essential. An effective detection system 

would empower farmers to make timely decisions, 

optimize crop management practices, and minimize 

losses associated with disease outbreaks. Deep 

learning, particularly through the use of convolutional 

neural networks (CNNs), has emerged as a 

transformative technology for disease detection in 

agriculture. By processing large datasets of images, 

CNNs can identify patterns and accurately differentiate 

between various disease types with remarkable speed, 

offering a robust alternative to traditional manual 
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inspection methods. 

This study focuses on the development and validation 

of a deep learning-based framework for automated 

detection and classification of maize leaf diseases. 

Utilizing a dataset of annotated maize leaf images, the 

proposed framework aims to enhance the accuracy of 

early disease detection, thereby promoting sustainable 

crop management and reducing yield losses (Nguyen et 

al. 2023; Shahi et al. 2023). By emphasizing scalability 

and performance, our approach seeks to assist farmers 

and agricultural professionals in optimizing crop 

protection strategies, ultimately contributing to 

improved food security and agricultural resilience. 

Despite the advances in disease detection, maize 

cultivation continues to face critical challenges due to 

various foliar diseases, including Northern Corn Leaf 

Blight, Gray Leaf Spot, and Common Rust. These 

diseases can lead to substantial yield reductions, 

threatening farmer incomes and regional food supplies. 

Given the complexities involved in manual disease 

identification, there is a pressing need for automated, 

accurate, and scalable detection methods. Traditional 

techniques, such as laboratory testing and field 

scouting, often fall short in efficiency and can be 

prohibitively expensive when applied to large-scale 

farms. Recent advancements in deep learning, a subset 

of artificial intelligence (AI), have demonstrated 

considerable promise in precision agriculture by 

delivering high accuracy in image classification tasks, 

which is vital for the detection and classification of 

plant diseases (Li et al. 2023). Furthermore, through 

comparative analysis with existing techniques, this 

study showcases improvements in classification speed 

and accuracy, underscoring its potential as a practical 

tool for large-scale agricultural applications (D. Zhu et 

al. 2023). 

A summary of common maize leaf diseases and their 

impact on yield reduction is provided in Table 1, while 

Figures 1 and 2 illustrate the names of the diseases and 

their life cycles, respectively. 
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Table 1: Common Maize Leaf Diseases and Their Impact on Crop Yield 

 
 
 

 

Scope and Motivation 

The rapid and accurate diagnosis of maize leaf diseases is 

crucial for achieving higher crop yields and ensuring 

global food security. Traditional methods of disease 

identification, which often rely on human expertise, can 

be time-consuming, inconsistent, and limited in 

scalability, particularly in resource-scarce regions. As a 

result, researchers are increasingly turning to artificial 

intelligence, specifically deep learning (DL) techniques, 

to overcome these challenges. 

This paper proposes a novel approach for automated 

maize leaf disease detection and classification, utilizing 

deep convolutional neural networks (CNNs) tailored for 

precision agriculture. By leveraging a large dataset of 

labeled maize leaf images, the proposed model is trained 

to effectively distinguish between healthy leaves and 

those affected by various common diseases, including leaf 

blight, rust, and gray leaf spot, among others (Dai et al. 

2023). Key innovations of this study include the model's 

high accuracy in identifying multiple disease classes 

under diverse environmental conditions, as well as its 

adaptability to varying levels of data quality. The 

motivation for this research arises from the urgent need to 

provide farmers and agricultural stakeholders with 

efficient diagnostic tools, empowering them to make 

timely interventions that can significantly reduce crop 

losses. The deep learning framework is designed to 

operate efficiently with widely available imaging devices, 

such as smartphones, enhancing its accessibility for a 

broader audience. By combining CNNs with transfer 

learning techniques, the model maximizes classification 

accuracy while minimizing the computational resources 

required for deployment. Additionally, the paper presents 

comparative analyses with traditional machine learning 

algorithms, demonstrating the superior performance of 

deep learning-based approaches in the context of maize 

leaf disease detection (Jung et al. 2023). This research not 

only highlights the potential of AI-driven solutions in 

agriculture but also aims to facilitate the adoption of 

advanced diagnostic tools that can contribute to more  

 

resilient and productive farming practices. 

 

BACKGROUND AND CHALLENGES 

Maize, one of the world's most widely cultivated staple 

crops, faces significant yield reduction risks due to 

various leaf diseases. Common diseases include maize 

rust, northern leaf blight, and gray leaf spot, each driven 

by distinct pathogens that severely affect plant health 

and productivity. Maize rust, caused by Puccinia 

sorghi, leads to rust-colored pustules on leaves, 

reducing photosynthetic efficiency and weakening the 

crop. Northern leaf blight, triggered by Exserohilum 

turcicum, appears as elongated lesions on the foliage, 

which can cause considerable defoliation under severe 

infections. Gray leaf spot, induced by Cercospora zeae-

maydis, presents as rectangular lesions and further 

deteriorates leaf health by hindering the plant's 

photosynthetic area (Haque et al. 2022). Together, these 

diseases threaten maize production by diminishing 

plant vitality, decreasing grain quality, and, ultimately, 

leading to considerable economic losses. Detecting and 

classifying these diseases early in the field is essential 

for effective intervention; Automated disease detection 

through deep learning techniques offers a promising 

alternative, enabling high-speed, accurate disease 

identification at early stages, which is critical for 

preventing spread and mitigating yield losses. This 

study explores the use of deep learning techniques for 

identifying and categorizing maize leaf diseases, 

emphasizing automated solutions that can enhance 

precision, reduce labor, and support sustainable 

agriculture. The conventional approaches for detecting 

maize leaf diseases, such as manual inspection and 

basic diagnostic tools, are constrained by various 

limitations, making them inefficient for large-scale 

agriculture. Manual inspection, though widely 

practiced, is inherently prone to human error, and the 

variability in expertise among inspectors can lead to 

inconsistent diagnosis. Additionally, traditional 

Authors  Name Disease Name Symptoms Impact on Yield 

(Jackson-ziems 2016) Northern Corn Leaf Blight Gray-green lesions, 

progressing to dead areas 

15-50% reduction 

(Yu et al. 2018) Gray Leaf Spot Narrow, brown lesions on 

leaves 

10-40% reduction 

(Olukolu et al. 2016) Common Rust Reddish-brown pustules on 

leaves 

5-20% reduction 
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methods struggle to scale effectively for vast 

agricultural expanses, which demand rapid, high-

precision monitoring solutions. These methods often 

lack the sensitivity for accurately distinguish between 

subtle disease variations and stages, leading to both 

false positives and missed diagnoses. Furthermore, as 

new pathogens emerge, traditional practices lag in 

adapting, thereby hampering timely intervention 

strategies critical for crop health(Khan et al. 2023). 

Maize, being a globally essential crop, is highly 

susceptible to a spectrum of foliar diseases, including 

but not limited to Northern Corn Leaf Blight, Gray 

Leaf Spot, and Common Rust, each capable of 

drastically reducing yields if not detected and 

managed promptly. Disease identification is 

challenging because symptoms can be visually 

similar, making it difficult to differentiate one disease 

from another with the naked eye alone. Additionally, 

environmental factors such as moisture levels and 

soil health can influence disease progression and 

manifestation, further complicating manual 

diagnostics. These challenges underscore the 

necessity for advanced, technology-driven 

approaches, such as deep learning, to facilitate 

automated, precise, and scalable detection, thus 

supporting sustainable crop protection and enhancing 

food security. 

The paper has several key sections, beginning with 

the Introduction, which outlines the significance of 

maize as a vital global crop and the challenges faced 

in traditional disease detection methods. This is 

followed by the Scope and Motivation, emphasizing 

the urgent need for rapid and accurate diagnosis of 

maize leaf diseases and the potential of deep learning 

technologies. The Background on Maize Leaf 

Diseases and Detection Challenges section provides 

an overview of common diseases affecting maize and 

the limitations of manual scouting. Next, the 

Overview of Deep Learning Techniques in Image 

Classification discusses the application of deep 

learning, particularly convolutional neural networks 

(CNNs), in disease identification. The Methodology 

section details the dataset and training processes used 

for the deep learning models. The Results and 

Discussion, section presents findings and comparison 

with traditional methods, highlighting their 

implications for agricultural practices. The paper 

concludes with the Conclusion, summarizing key 

findings and challenges, and the Proposed Future 

Scope, which suggests directions for future research 

to enhance model performance and applicability. 

Finally, the References section lists all sources cited 

throughout the paper. 

 

DEEP LEARNING TECHNIQUES IN 

IMAGE CLASSIFICATION 
Deep learning has emerged as a powerful approach to 

image classification, particularly for tasks that 

involve complex pattern recognition, such as disease 

identification in agricultural contexts. This technique 

leverages neural networks, especially deep 

convolutional neural networks (CNNs), to 

automatically learn features from raw image data, 

enabling the detection and classification of subtle 

variations in plant health. 

 

Convolutional Neural Networks (CNNs):  

Convolutional Neural Networks (CNNs) represent a 

specialized category of deep learning models 

structured explicitly for image and spatial data 

analysis. The architecture of a CNN is composed of 

multiple layers, each designed to progressively 

extract and learn intricate patterns from input images. 

Typically, a CNN begins with convolutional layers, 

where filters scan across the image, identifying 

essential features like edges, textures, and shapes at 

various levels. Following the convolutional layers are 

pooling layers, often used to reduce spatial 

dimensions while retaining critical information, thus 

making the model more efficient and less prone to 

overfitting. These layers together create a hierarchy 

of features that allows the CNN to discern complex 

patterns in images, crucial for differentiating between 

categories in tasks such as image classification 

(Albert, Bille and Leonard 2023).  

Towards the end of the architecture, CNNs utilize 

fully connected layers, by combining and processing 

extracted features for making final predictions. The 

hierarchical feature extraction in CNNs is a pivotal 

strength, allowing these models to adapt to diverse 

and complex image datasets with remarkable 

accuracy. Figure 3. Illustrates the architecture of the 

Convolutional Neural Networks (CNNs). 
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Figure 3. Design and Structure of Convolutional Neural Networks (CNNs) (Bengani 2024) 

 

Recurrent Neural Networks and LSTM Models:  

RNNsaddress tasks where each input element is related 

to previous ones, thereby retaining information over 

time. The recurrent structure of RNNs involves 

feedback loops within the network, allowing data to 

persist as it moves through each layer, making them 

ideal for sequential data processing. Unlike traditional 

feed forward networks that assume independence 

among inputs, RNNs consider the sequential context,  

updating their hidden state based on both the current 

input and the previous state. This characteristic enables 

them to perform effectively on tasks where historical 

information influences current predictions, such as in 

language models, where words are related within a 

sentence. However, standard RNNs face challenges 

with long sequences due to vanishing or exploding 

gradients, where crucial information can be lost or 

exaggerated over extended sequences(Van-Horenbeke 

and Peer 2023).  Figure 4. Illustrates the architecture of 

unrolled Recurrent Neural Networks (RNNs).  

                
 

Figure 4. Architecture Recurrent Neural Networks (RNNs)           Figure 5. Architecture of Long Short Term Memory (LSTM) 

                                    (Kumar 2020)                                                                                                    (Kumar 2020) 

 

Long Short-Term Memory (LSTM) networks use 

memory cells and gates input, forget, and output gates 

that regulate the flow of information through the 

network. These memory cells allow LSTMs to 

selectively retain important information over long 

sequences, making them well-suited for applications 

where long-term dependencies are crucial. In addition 

to LSTMs, other RNN-based models, such as Gated 

Recurrent Units (GRUs), also aim to solve similar 

problems by using simplified gating mechanisms, 

enhancing performance while reducing computational 

requirements. These advancements have made RNNs 

and LSTMs essential tools in deep learning applications 

that demand an understanding of temporal or ordered 

data(Kumar 2020). Figure 5. Illustrates the architecture 

of Long Short Term Memory (LSTM) 

 
 



68 

 

   Table 2: Comparative Analysis of CNNs, RNNs, and LSTM Networks 

 

Temporal Data Applications in Agriculture and 

Environmental Monitoring 

The use of RNNs and LSTM models is not limited to 

traditional fields such as language processing and 

speech recognition; they are increasingly being applied 

in agriculture, particularly in contexts involving 

temporal or sequential data. For example, RNNs and 

LSTMs can effectively model crop growth patterns, 

analyze weather-related time-series data, and predict 

disease outbreaks over time. In these scenarios, the data 

is organized chronologically, with past values 

influencing future states. 

In precision agriculture, sequential models like RNNs 

and LSTMs play a crucial role in predicting crop yields 

by examining data gathered across various time points, 

which includes factors such as soil conditions, nutrient 

levels, moisture content, and climate variations. These 

models facilitate the early identification of stress 

factors that could impact yield, enabling farmers to 

implement strategies to enhance crop health. 

Additionally, they are instrumental in  

 

 

disease forecasting, as they track the temporal 

progression of infection rates and spread patterns over 

weeks or months, thereby providing insights into 

potential disease outbreaks and allowing for timely 

preventive measures. This predictive capability of 

RNNs and LSTMs is extremely valuable, as it supports 

ongoing monitoring and early intervention, which is 

especially critical in large-scale farming operations (Xu 

et al. 2023). 

 

RNNs and LSTM Models in Static Image 

Classification 

While RNNs and LSTMs are effective for processing 

sequential data, their effectiveness diminishes in areas 

such as static image classification, where the data does 

not possess a natural order or sequence. In image 

analysis, the relationships between pixels are spatial 

rather than sequential, eliminating the need to retain 

historical data points over time. For example, in the 

classification of maize leaf diseases, the focus is on 

analyzing individual images to identify disease 

symptoms based on visual characteristics, rather than 

Authors Parameter 

 

Convolutional 

Neural Networks 

(CNNs) 

Recurrent Neural 

Networks (RNNs) 

 

Long Short-Term 

Memory (LSTM) 

Application 

Relevance 

(Albert et al. 

2023) 

Data Type Primarily spatial 

data (e.g., images, 

video frames) 

Sequential or time-

series data (e.g., 

text, time-series 

signals) 

Sequential data 

with long-term 

dependencies 

Image 

classification 

(CNNs), NLP, and 

time-series 

prediction (RNNs, 

LSTMs) 

(Van-Horenbeke 

and Peer 2023) 

Core Architecture Convolutional 

layers, pooling 

layers, fully 

connected layers 

Recurrent structure 

with feedback 

loops 

Memory cells with 

input, forget, and 

output gates 

 

Hierarchical 

feature extraction 

(CNNs) and 

temporal sequence 

modeling 

(RNNs/LSTMs) 

(Kumar 2020) Feature Learning Extracts local 

features through 

sliding 

convolutional 

filters 

Captures temporal 

dependencies in 

sequential data 

Retains 

information over 

longer sequences 

with memory 

mechanisms 

Effective feature 

recognition 

(CNNs) vs. 

memory retention 

(LSTMs) 

(Zhang, Lei, and 

Dhillon 2018) 

Gradient Handling Less prone to 

vanishing gradient 

issues due to 

localized 

operations 

Prone to vanishing 

or exploding 

gradients over long 

sequences 

Mitigates gradient 

issues with gated 

mechanisms 

Stable training over 

deep networks 

(LSTMs vs. 

traditional RNNs) 

 

(Of 2008) 

Computational 

Complexity 

High due to 

multiple 

convolutional 

layers and large 

filter sizes 

Moderate, but 

increases with 

sequence length 

Higher than RNNs 

due to additional 

gates and memory 

mechanisms 

Model selection 

depends on task 

complexity and 

data characteristics 
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observing changes over time (Goumiri, Benboudjema, 

and Pieczynski 2023). 

In tasks that involve static leaf images, RNNs and 

LSTMs are not well-suited, as they primarily extract 

features from sequential data. This limitation stems 

from RNNs' emphasis on temporal dependencies, 

which would require processing each pixel in a 

sequential manner. Such an approach would 

compromise the spatial relationships between pixels, 

which are essential for detecting disease symptoms. In 

contrast, Convolutional Neural Networks (CNNs) are 

designed to capture the spatial hierarchies present in 

images. Their architecture, which includes 

convolutional layers, pooling operations, and 

hierarchical feature maps, enables them to identify 

patterns that are more effective for image classification 

(Khan et al. 2023). Table 3 provides a comparative 

overview of Convolutional Neural Networks (CNNs) 

versus RNNs and LSTM.  

 
Table 3. Comparison table between Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)/Long 

Short-Term Memory networks (LSTMs) 
 

Ref No. 

 

Parameter 

 

RNNs LSTMs CNNs Application 

in Image 

Classificatio

n 

Limitations 

 

(Duan et al. 

2023) 

Primary 

Focus 

Sequential 

data 

processing 

Temporal data 

with long-

term 

dependencies 

Spatial data 

processing 

through 

convolutions 

Static images 

involve 

analysis of 

spatial 

features, not 

sequences, 

making RNNs 

and LSTMs 

less suitable. 

RNNs cannot efficiently 

model spatial data as they 

lack spatial feature 

extraction capabilities. 

 

 

 

(Dokládal et 

al. 2013) 

Data Structure Processes data 

in a linear 

sequence 

Retains past 

information 

over a 

sequence 

Extracts 

features using 

spatial filters 

over image 

grids 

Images do not 

have an 

inherent 

temporal 

sequence; 

they have 

spatial 

structures. 

LSTMs introduce 

complexity with their 

memory gates, making them 

computationally intensive 

for image tasks. 

(Ostmeyer 

and Cowell 

2019) 

Processing 

Approach 

Processes one 

element at a 

time, 

dependent on 

previous 

element 

Memory cells 

store long-

term 

dependencies 

over 

sequences 

Uses kernels 

to scan for 

patterns in 

image pixels 

Sequential 

processing of 

image pixels 

is inefficient 

for 

classification 

tasks. 

RNNs and LSTMs require 

extensive computational 

resources and time when 

processing large image data. 

 

(Xia et al. 

2023) 

Feature 

Extraction 

Capability 

Poor at 

capturing 

spatial 

relationships 

Better than 

RNNs for 

sequences but 

limited for 

static images 

Strong in 

extracting 

spatial 

hierarchies 

and patterns 

Effective 

feature 

extraction in 

static images 

is crucial for 

identifying 

leaf disease 

symptoms 

CNNs require large datasets 

and training time for optimal 

feature learning. 

(Lee et al. 

2021) 

Use Case 

Relevance 

Time-series 

analysis, 

speech 

recognition 

Time-series 

forecasting, 

video data 

analysis 

Object 

detection, 

image 

classification 

RNNs and 

LSTMs are 

mismatched 

for static, 

spatially rich 

image 

CNNs are more suited for 

image data but may 

underperform on temporal or 

sequential data. 
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Convolutional Neural Networks 
Convolutional Neural Networks (CNNs) have 

established themselves as the foundation for static 

image classification tasks due to their proficiency in 

identifying spatial patterns through localized filters. 

The structure of CNNs consists of multiple layers, 

including convolutional, pooling, and fully connected 

layers, which enable the extraction of both low-level 

and high-level features from images. By learning to 

represent various features across different layers, 

CNNs can recognize intricate patterns, such as texture 

and shape, which are essential for diagnosing plant 

diseases based on visual indicators (Dai et al. 2023). In 

the context of detecting diseases in maize leaves, CNNs 

can pinpoint specific features associated with diseases, 

including the shapes of spots, variations in color, and 

irregular textures that differentiate diseased leaves 

from healthy ones. When trained on extensive datasets 

with labeled images of both diseased and healthy 

leaves, these models become adept at identifying 

unique patterns linked to various diseases, making 

them particularly effective for classification tasks that 

are not suited for Recurrent Neural Networks (RNNs) 

and Long Short-Term Memory networks (LSTMs). 

Although RNNs and LSTMs are crucial for 

applications that involve time-series or sequential data, 

they do not possess the spatial processing capabilities 

that enable CNNs to excel in single-image 

classification. This architectural distinction clarifies 

why CNNs surpass RNN-based models in fields that 

focus on static images, especially in agricultural 

applications like maize leaf disease detection. Table 4 

presents a comparison of the characteristics of CNN, 

RNN, and LSTM architectures in the context of Deep 

Learning applications.
 

Table 4. Comparative Characteristics of CNN, RNN, and LSTM Architectures for Deep Learning Applications 

 

Ref No. Parameter Convolutional 

Neural Networks 

(CNNs) 

Recurrent Neural 

Networks (RNNs) 

Long Short-Term 

Memory 

Networks 

(LSTMs) 

Suitability in 

Maize Leaf 

Disease Detection 

(Pei et al. 2022) Data Type Primarily designed 

for spatial data 

(e.g., images) 

Best suited for 

sequential data like 

time series 

Ideal for long-

range 

dependencies in 

sequences 

CNNs excel due to 

their ability to 

analyze image-

specific features 

(Pei et al. 2022) Architecture Focus Utilizes 

convolutional 

layers for local 

feature extraction 

Focuses on 

temporal 

relationships 

across time steps 

Incorporates gated 

memory cells to 

manage 

information flow 

over time 

CNNs are preferred 

due to their spatial 

feature extraction 

capabilities 

(Elizar et al. 

2022) 

Feature 

Representation 

Captures low- and 

high-level spatial 

patterns, such as 

edges and textures 

Extracts temporal 

features through 

recurrence 

Learns temporal 

patterns while 

preserving long-

term context 

Critical for 

detecting visual 

patterns in leaf 

spots, textures, etc. 

 

(Elizar et al. 

2022) 

Computational 

Complexity 

Generally more 

efficient for 

parallel processing 

of image data 

Computationally 

intensive due to 

sequential data 

handling 

Higher complexity 

due to gating 

mechanisms and 

memory 

management 

CNNs achieve 

faster processing 

for static datasets 

like images 

(Wang et al. 

2022) 

Application 

Domain 

Commonly used in 

image recognition, 

object detection, 

and image 

segmentation 

Suited for speech 

recognition, 

language 

modeling, and time 

series analysis 

Effective for text 

generation, 

machine 

translation, and 

sequential data 

Essential for 

image-based 

disease 

classification like 

leaf disease 
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Potential Applications of RNNs and LSTMs in 

Agricultural Monitoring Beyond Static Images 

Although for static image classification RNNs and 

LSTMs are not commonly used, they can play 

supportive roles in broader agricultural monitoring 

systems where temporal analysis is crucial. For 

example, combining CNNs with RNNs or LSTMs 

enables the development of hybrid models capable of 

processing both image and temporal data. Such hybrid 

models can be used to monitor disease progression over 

time by analyzing sequences of images taken at 

different stages of crop growth, allowing a dynamic 

understanding of disease development and its impact on 

yield. This is especially relevant in the context of 

diseases that have a latent phase, where symptoms 

emerge gradually over time. By employing CNNs for 

spatial feature extraction and LSTMs for temporal 

sequence modeling, these systems can offer insights 

into how diseases evolve over time, providing more 

accurate forecasts and enabling targeted 

interventions(Xing et al. 2023). 

 

 

 

We can use RNNs and LSTMs in drone or satellite-

based agricultural monitoring. By capturing images of 

maize fields at regular intervals, these models can 

analyze spatial and temporal data simultaneously, 

identifying trends in disease spread, crop health or pest 

infestations over large areas. This allows for early 

detection and real-time monitoring, enhancing the 

precision of agricultural management strategies. 

 

Vision Transformers (ViTs) in Agricultural Disease 

Detection 

In recent years, Transformers and Vision Transformers 

(ViTs), has demonstrated remarkable potential in the 

field of image analysis, offering new insights into 

agricultural disease detection. This article explores the 

role of Transformers and ViTs in agricultural disease 

detection, underscoring their potential to address key 

challenges in the detection, classification, and overall 

management of plant health, particularly in high-stakes 

crops such as maize, wheat, and rice(D. Zhu et al. 2023) 

(Soleymani et al. 2021). Figure 6. Depicts the 

architecture of Vision Transformers (ViTs). 

 
Figure 6. Architecture of Vision Transformers (ViTs) (Soleymani et al. 2021) 

 

Image-Based Agricultural Disease Detection 

Image-based detection of plant diseases has 

increasingly relied on deep learning techniques due to 

their ability to identify complex patterns in visual data 

autonomously. While CNNs are highly effective, they 

come with limitations, particularly when working with 

large datasets and when needing to capture long-range 

dependencies in images, such as leaf textures or lesion 

patterns spread across a plant's surface. CNNs operate 

based on fixed receptive fields, making it challenging 

to model relationships between distant parts of an 

image without significant computational cost. This 

challenge presents a unique opportunity for 

Transformer-based architectures, which utilize self-

attention mechanisms to capture dependencies across 

entire images, making them particularly advantageous 

for complex, high-dimensional agricultural data. 

 

The Rise of Transformers in Image Processing 

Originally introduced in the context of natural language 

processing (NLP), Transformer architectures are 

designed to capture relationships between elements 

within a sequence, such as words or sentences, using 

self-attention mechanisms. In image analysis, these 
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mechanisms allow a model to understand the 

relationship between pixels in an image, enabling it to 

identify contextual information that may be missed by 

CNNs. Self-attention permits Transformers to weigh 

the relevance of various parts of an image relative to 

one another, allowing for a more nuanced 

understanding of complex visual patterns. 

Applying Transformers to vision tasks faced challenges 

initially due to the high computational demands 

associated with large image datasets. However, 

researchers developed Vision Transformers (ViTs) to 

bridge this gap. ViTs split an image into smaller, fixed-

size patches and treat each patch as a token, similar to 

words in an NLP context. The self-attention mechanism 

then analyzes these tokens collectively, allowing ViTs 

to understand intricate relationships within the image 

while managing computational resources efficiently. 

The ability of ViTs to learn long-range dependencies is 

particularly valuable for agricultural disease detection, 

where visual patterns in plant leaves may not be 

restricted to local regions. 

 

Application of Vision Transformers (ViTs) in 

Agricultural Disease Detection 

The application of ViTs in agriculture is relatively new, 

but it holds significant promise for detecting diseases in 

crops. Traditional CNN models require a large number 

of parameters to capture details across extensive image 

regions, leading to increased training times and 

computational costs. ViTs, with their self-attention 

mechanism, offer a more efficient approach by 

allowing the model to focus on relevant parts of an 

image without requiring extensive convolutional 

layers. This shift is especially useful for agricultural 

applications where disease symptoms can appear 

sporadically across the plant leaf, stem, or other 

regions, requiring a model capable of recognizing 

patterns across these varying locations(Parez et al. 

2023). Figure 7. Depicts the application of vision 

transformers (vits) in agricultural disease detection.

 

 
Figure 7. Utilizing Vision Transformers (ViTs) for Detecting Diseases in Agriculture (Parez et al. 2023) 

 

In agricultural disease detection, ViTs have shown 

potential in identifying early signs of diseases by 

recognizing subtle color changes, texture alterations, 

and shape irregularities across leaves and stems. For 

example, diseases like rust, mildew, and bacterial blight 

manifest in small, scattered spots that may not 

immediately stand out in traditional imaging methods. 

ViTs can detect these minor abnormalities, as they 

assess relationships between different image patches, 

thereby enabling early detection and intervention. 

Additionally, ViTs offer robustness against variations in 

lighting, angle, and background noise in images, which 

are common challenges in real-world agricultural 

settings. The attention-based framework allows ViTs 

selectively focus on relevant parts of an image, 

disregarding irrelevant background information, which 

is crucial when images are captured in natural 

environments. This adaptability not only improves 

detection accuracy but also reduces the need for 

extensive pre-processing, streamlining the disease 

detection pipeline. 

 

PERFORMANCE METRICS AND BENCHMARK 

DATASETS 

Agriculture, as a cornerstone of global food security, 

confronts significant challenges stemming from plant 
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diseases that adversely impact crop yield and quality. 

Maize (Zea mays), a vital staple food for millions 

around the globe, is particularly vulnerable to various 

leaf diseases that can lead to considerable yield losses. 

As a result, automated disease detection and 

classification methods are becoming increasingly 

crucial for enhancing crop management practices. 

Deep learning (DL) techniques, especially 

Convolutional Neural Networks (CNNs), have 

demonstrated considerable promise in automating and 

improving the accuracy of disease detection in maize. 

This article delves into the common performance 

metrics utilized in disease classification models, 

reviews publicly available datasets for maize leaf 

disease detection, and discusses the challenges 

associated with benchmarking consistency. It 

emphasizes the necessity for standardized datasets and 

evaluation protocols to facilitate reliable comparisons 

and advancements in the field. By addressing these 

issues, researchers and practitioners can better leverage 

deep learning technologies to combat maize diseases 

and ultimately improve agricultural outcomes. 

 

METRICS FOR DISEASE CLASSIFICATION  

For any model applied to disease classification, 

evaluation metrics are crucial for assessing the 

effectiveness and reliability of its predictions. The 

following are key metrics commonly used in disease 

classification models, particularly in the context of 

maize leaf disease detection (Liu et al. 2023). 

1. Accuracy: Accuracy is defined as the ratio of correct 

predictions to the total predictions made by the model. 

While it is a commonly used metric for evaluating 

model performance, accuracy alone may not provide a 

complete understanding of a model's effectiveness, 

especially in scenarios involving imbalanced datasets. 

For instance, in a dataset where healthy samples vastly 

outnumber diseased samples, a model that primarily 

predicts “healthy” may achieve high accuracy but will 

be ineffective in identifying diseased plants. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
…………..(1) 

2. Precision:Precision is defined as the ratio of true 

positive predictions to the sum of true positives and 

false positives. This metric is critical in disease 

detection as it reflects the model's ability to identify 

only those instances that genuinely exhibit symptoms 

of disease. High precision indicates a low false-positive 

rate, which is beneficial in practical applications to 

minimize unnecessary interventions. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ………………..(2) 

3. Recall: Also known as sensitivity, recall measures 

the proportion of true positive predictions against all 

actual positive cases. For disease detection, high recall 

is important to ensure that diseased plants are 

identified, allowing for timely intervention and 

treatment. Low recall would mean that many diseased 

cases go undetected, potentially leading to the spread of 

disease. 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                ………………….(3) 

4. F1 Score: The F1 score is the harmonic mean of 

precision and recall, providing a balanced measure 

when there is a trade-off between the two. In cases 

where both precision and recall are crucial, the F1 score 

becomes a reliable metric. It is especially useful when 

there is class imbalance, as it provides a single metric 

that considers both false positives and false negatives, 

offering a comprehensive view of the model's 

performance. 

F1 Score =2  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
………………(4) 

5. Computational Efficiency: Computational 

efficiency refers to the time and resources a model 

requires for training and inference. In real-world 

agricultural applications, where quick decision-making 

is necessary, models with high computational efficiency 

are preferred. Efficient models allow for faster 

deployment on edge devices and enable real-time 

disease detection. In resource-limited settings, models 

that achieve high performance with minimal 

computation are particularly valuable. 

Together, these metrics help evaluate and refine disease 

classification models, ensuring they meet the precision, 

speed, and reliability requirements essential for 

practical application in agriculture. 

Publicly Available Datasets for Maize Leaf Disease 

Detection 

Publicly accessible datasets are invaluable resources for 

training and validating deep learning models in disease 

detection. A well-curated dataset enables researchers to 

develop and benchmark models effectively. Several 

publicly available datasets are utilized in maize disease 

classification research, including the PlantVillage 

dataset and other domain-specific datasets. 

PlantVillage Dataset: One of the most prominent 

datasets in plant disease research is the PlantVillage 

dataset, which features a diverse array of images 

representing various plant species, including maize. 

Specifically, the maize category includes images of 
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prevalent leaf diseases such as northern leaf blight, gray 

leaf spot, and common rust, each exhibiting unique 

visual characteristics. This extensive collection of 

images is invaluable for training robust models capable 

of generalizing across different manifestations of these 

diseases (Joshi et al. 2023). 

Domain-Specific Datasets: In addition to 

PlantVillage, several domain-specific datasets are 

available for research, often curated by agricultural 

institutions and research organizations. These datasets 

may focus on particular geographic regions or include 

unique disease strains relevant to those areas. For 

instance, some datasets focus on maize crops from 

specific climates or locations where particular diseases 

are prevalent. Although these datasets may be smaller 

in size, they provide valuable insights into region-

specific diseases and environmental influences, 

supporting models that can adapt to local variations in 

disease manifestation(Huang et al. 2023). 

Field-Based Datasets: These datasets are gathered 

directly from field environments instead of controlled 

settings. As a result, they often capture variations 

caused by environmental factors, lighting conditions, 

and occlusions, making the images more reflective of 

real-world scenarios. Such datasets are essential for 

creating robust models that can excel beyond laboratory 

conditions, as they replicate the challenges encountered 

by models used in agricultural fields (Güldenring, van 

Evert, and Nalpantidis 2023). Table 5: Illustrates the 

overview of publicly accessible datasets for maize 

disease detection research affecting the visible 

symptoms of disease. 
 

 

 

Table 5: Overview of Publicly Accessible Datasets for Maize Disease Detection Research 

 

The availability and quality of these datasets play a 

significant role in advancing research for disease 

detection in maize leaves. However, limitations in 

dataset standardization can present challenges, as 

described in the following section. 
 

CHALLENGES IN DEEP LEARNING-

BASED MAIZE DISEASE DETECTION 
General Issues                                         

One of the foremost challenges in deploying deep 

learning models for maize disease detection is ensuring 

their ability to generalize across diverse regions, 

seasons, and environmental conditions. Models trained  

 

on data collected from specific regions or under specific 

conditions, may differ substantially from the 

deployment environments. This discrepancy  

 

leads to significant variability in model performance 

when exposed to new or unseen conditions. For 

example, environmental factors like lighting, 

temperature, and humidity can alter leaf appearance, 

Additionally, maize varieties grown in different regions 

may exhibit disease symptoms differently due to 

genetic variations and climate factors. A model that 

performs well in one region may not necessarily 

perform as accurately in another due to these variations. 

Addressing these generalization issues requires robust 

 Dataset Primary Datasets Attributes Applications Challenges & 

Considerations 

(Joshi et al. 2023) Broad-Use 

Datasets 

PlantVillage 

Dataset 

Large-scale, multi-

disease, high-

resolution images 

Generalized model 

training and 

validation 

Potential data 

imbalance across 

disease types 

(Huang et al. 

2023) 

Domain-Specific 

Datasets 

Geo-tagged 

Agricultural 

Databases 

Region-specific 

images, climate-

specific disease 

data 

Custom model 

training for 

regional adaptation 

Limited 

availability; 

variable image 

quality 

(Güldenring et al. 

2023) 

Field-Based 

Datasets 

Field-collected 

maize disease 

images 

Diverse 

environmental 

conditions, natural 

lighting 

Enhancing model 

robustness to real-

world field 

variability 

Environmental 

noise, occlusions, 

and non-uniform 

lighting 
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training data that encompasses a wide range of 

environmental scenarios and maize varieties. 

Techniques like domain adaptation, where the model is 

trained to adjust to shifts in data distribution, and data 

augmentation, which synthetically increases the 

diversity of training data, are employed to improve 

generalization. However, ensuring reliable 

performance across all possible scenarios remains a 

challenge for researchers and practitioners alike(Dai et 

al. 2023). 

Data Scarcity and Quality 

Data scarcity and quality are critical issues in 

developing high-performing deep learning models for 

maize disease detection. Deep learning algorithms are 

data-hungry and require large volumes of labeled 

images to learn distinguishing features effectively. 

Unfortunately, assembling high-quality datasets for 

maize diseases can be challenging, especially in under-

resourced regions where technical expertise and data 

collection infrastructure may be lacking. Additionally, 

data imbalance is a common issue, as some diseases 

may be less prevalent, leading to a disproportionately 

low number of samples for those categories. 

Imbalanced datasets can lead to biased models that 

perform well on majority classes while failing to 

identify less common diseases accurately. Noisy data, 

such as images with poor resolution, inconsistent 

labeling, or environmental artifacts like shadows and 

backgrounds, further complicate training and can 

reduce model accuracy. Solutions to these issues 

include data augmentation to expand available datasets, 

using transfer learning to leverage pre-trained models, 

and applying techniques like class balancing to address 

data imbalance. Despite these approaches, obtaining 

high-quality, balanced, and representative data remains 

a significant hurdle in advancing reliable maize disease 

detection models(Gul and Bora 2023). 

Computational Constraints 

The computational requirements of deep learning 

models, especially Convolutional Neural Networks 

(CNNs), present another major challenge. Training and 

implementing these models necessitate considerable 

computational power, including high-performance 

GPUs, ample memory, and prolonged processing times. 

In agricultural contexts, many stakeholders, such as 

small-scale farmers and agricultural cooperatives, often 

lack access to these advanced computing resources. 

Additionally, deploying deep learning models for real-

time use, such as in mobile applications in the field, 

introduces further complications. Real-time processing 

demands lightweight models with minimal latency, 

which can be challenging to achieve without sacrificing 

accuracy. Techniques such as model pruning, 

quantization, and knowledge distillation can help 

diminish model size and computational requirements, 

making deployment more practical in resource-limited 

settings. However, striking a balance between model 

efficiency and performance remains a complex 

challenge. Ensuring that deep learning models are 

computationally efficient and can function on low-cost 

hardware is crucial for facilitating the widespread 

adoption of these technologies in agriculture 

(Thompson et al. 2021). 

Interpretability and Need  

In addition to technical hurdles, the interpretability and 

explainability of deep learning models are crucial factors 

influencing their acceptance and reliability among end-

users. Convolutional Neural Networks (CNNs) and other 

deep learning architectures are frequently viewed as 

"black boxes" because of their intricate structures and 

opaque decision-making processes. While these models 

can achieve high accuracy in detecting and classifying 

diseases, they provide limited insights into the specific 

features or patterns that inform their predictions. This lack 

of explainability can deter end-users, such as farmers and 

agronomists, who may be reluctant to trust a model's 

predictions without understanding the underlying 

rationale. Explainability is particularly vital in agriculture, 

where incorrect diagnoses can result in costly and 

potentially damaging decisions, such as unnecessary 

pesticide use or unsuitable crop management strategies. 

To address the demand for explainability, researchers are 

investigating techniques like attention mechanisms, 

saliency maps, and Layer-wise Relevance Propagation 

(LRP) to visualize the elements of an image that 

influenced the model's predictions. These methods can 

help pinpoint the specific areas of a maize leaf that the 

model deemed significant for disease diagnosis, enabling 

end-users to interpret the model's decisions more 

intuitively. Another strategy to enhance interpretability 

involves integrating deep learning with rule-based 

systems, where the model's predictions are supplemented 

by established rules grounded in agronomic knowledge. 

This hybrid approach can improve model transparency 

and make the decision-making process more accessible to 

non-technical users (Goerigk and Hartisch 2023). Table 6 

presents an analysis of the technical challenges and 

solutions in deep learning-based maize disease detection.
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Table 6: Challenges and Solutions in Deep Learning-Based Maize Disease Detection 

 

CONCLUSIONS 
The incorporation of deep learning methods into the 

detection and classification of maize leaf diseases 

represents a groundbreaking advancement in 

agricultural practices. This review highlights that deep 

learning, especially through convolutional neural 

networks (CNNs), serves as a powerful alternative to  

conventional manual inspection techniques, which tend 

to be labor-intensive and prone to human error. Deep 

learning models excel at recognizing intricate patterns 

in leaf images, enabling swift and accurate diagnoses 

of diseases such as maize rust, northern leaf blight, and 

gray leaf spot. These technological advancements are 

vital for implementing timely interventions that can 

reduce crop losses and enhance overall yields. 

However, despite these encouraging developments,  

 

several challenges persist that may impede the 

widespread implementation of these technologies in 

real-world agricultural scenarios. Key obstacles 

include the need for models to generalize effectively 

across varying environmental conditions, the scarcity 

of quality data, and the requirement for high-

performance computational resources. It is crucial for 

these models to demonstrate reliable performance in 

diverse agricultural settings to ensure their practical 

effectiveness. Additionally, access to high-quality, 

balanced datasets is essential for training models 

capable of achieving high levels of accuracy in disease 

detection. The insights from this study underscore the 

necessity of creating deep learning models that are not 

only precise but also flexible and resource-efficient. By 

tackling these challenges head-on, deep learning has 

 Challenges Description Impact on Model 

Performance 

Mitigation 

Techniques 

Implementation 

Constraints 

(Dai et 

al. 2023) 

Issues Models struggle to 

generalize across 

regions and climates 

due to variability in 

conditions like light, 

temperature, and 

plant genotype. 

 

Decreases 

reliability in 

new/unseen 

environments; 

variability in 

detection accuracy 

between regions 

and seasons. 

 

Domain adaptation, 

diverse dataset 

collection, and 

augmentation 

strategies to increase 

training data 

variability. 

High diversity data 

gathering is costly; domain 

adaptation methods can be 

computationally intensive. 

(Gul and 

Bora 

2023) 

Data 

Scarcity and 

Quality 

Insufficient and 

imbalanced-labeled 

datasets with poor-

quality images (low 

resolution, artifacts) 

hinder model 

learning for rare 

maize diseases. 

Leads to biased 

models favoring 

common diseases 

and reduces 

robustness against 

noisy inputs. 

Data augmentation, 

transfer learning with 

pre-trained models, 

and class balancing 

methods to improve 

training coverage 

Imbalanced datasets still 

challenge accurate detection 

for minority classes; quality 

data is costly. 

(Thomps

on et al. 

2021) 

Computatio

nal 

Constraints 

High computational 

resources are 

required for training 

and deploying CNN 

models, limiting 

accessibility for 

small-scale 

agricultural 

stakeholders. 

Restricts real-time 

deployment 

potential; models 

may perform 

slower and need 

higher latency 

adjustments. 

Model compression 

techniques like 

pruning, quantization, 

and knowledge 

distillation to minimize 

computational demand 

without sacrificing 

accuracy. 

Low-cost hardware 

constraints limit model 

complexity; balancing 

model efficiency with 

accuracy is crucial. 

(Goerigk 

and 

Hartisch 

2023) 

Interpretabil

ity 

Requiremen

ts 

Deep learning 

models often lack 

transparency, 

creating difficulty for 

farmers to trust 

automated disease 

diagnosis fully. 

Limits model 

adoption and user 

confidence, 

particularly when 

predictions lead to 

cost- or effort-

intensive actions. 

Techniques like 

attention mechanisms, 

saliency maps, and 

Layer-wise Relevance 

Propagation (LRP) for 

visualizing prediction-

influencing features. 

Attention-based methods 

increase complexity; 

explainable models may 

incur added computational 

costs. 
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the potential to significantly improve maize disease 

management, ultimately bolstering agricultural 

productivity and enhancing global food security. 

 

FUTURE SCOPE 
As we look toward the future, the field of deep learning 

for detecting maize diseases is on the brink of 

remarkable progress. A key area of emphasis will be the 

improvement of model generalization by utilizing a 

variety of diverse and representative datasets. This can 

be accomplished through the adoption of semi-

supervised and self-supervised learning methods, 

which can effectively utilize unlabeled or synthetic 

data, thereby decreasing the dependency on extensive 

annotated datasets. Such approaches could help 

mitigate some of the current challenges related to data 

scarcity in this domain. 

Furthermore, the creation of lightweight models will be 

essential for facilitating real-time disease detection in 

environments with limited resources. Techniques like 

model pruning, quantization, and knowledge 

distillation can contribute to the development of 

efficient models that deliver high accuracy while 

consuming less computational power. This is 

particularly vital for smallholder farmers who may lack 

access to advanced computing hardware. Future 

investigations should also focus on integrating 

specialized agronomic knowledge into deep learning 

frameworks. By embedding insights from agricultural 

experts, these systems can be customized to address the 

specific requirements of different farming 

communities, thereby enhancing their practical 

applicability and relevance. Collaboration between 

machine learning experts and agricultural professionals 

will be crucial for crafting solutions that are both 

technically robust and relevant in practical situations. 

In addition, exploring multi-modal data sources such as 

merging image data with environmental variables like 

soil moisture, temperature, and humidity—could 

significantly enhance the precision and dependability 

of disease detection models. This comprehensive 

approach would provide a deeper understanding of the 

factors affecting maize health, ultimately leading to 

more informed decision-making for farmers. 
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