SUPPLY CHAIN OPTIMIZATION IN AGRICULTURE USING ARTIFICIAL INTELLIGENCE
Keywords:
Supply Chain Optimization, Artificial Intelligence, IoTAbstract
Agriculture is vital to nation’s economy as it fulfills the food demand of increasing population .The demand for sustainable practices increases and supply chain optimization using Artificial Intelligence (AI) is the most promising technology in agriculture sector. This article reviews the recent research done in the field of supply chain based on various AI techniques. The process of supply chain in agriculture is discussed and various AI tools are discussed which helps in mitigating the problems of supply chain. The research gaps in the current scenario are also discussed.
References
Bai, S., Wang, Y., Zheng, S., & He, H. (2023). Green Investment Decisions and Coordination in a Green Agri-Product Supply Chain considering Risk Aversion and Bargaining Power under Different Channel Power Structures. Complexity, 2023. https://doi.org/10.1155/2023/6401962
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15–30. https://doi.org/10.1016/j.aac.2022.10.001
Mishra, A. C., Das, J., & Awtar, R. (n.d.). An Emerging Era Of Research In Agriculture Using AI. www.jsrtjournal.com
Olabimpe Banke Akintuyi. (2024). Adaptive AI in precision agriculture: A review: Investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Open Access Research Journal of Multidisciplinary Studies, 7(2), 016–030. https://doi.org/10.53022/oarjms.2024.7.2.0023
Oluwafunmi Adijat Elufioye, Chinedu Ugochukwu Ike, Olubusola Odeyemi, Favour Oluwadamilare Usman, & Noluthando Zamanjomane Mhlongo. (2024). AI-Driven Predictive Analytics in Agricultural Supply Chains: A Review: Assessing The Benefits And Challenges Of AI In Forecasting Demand And Optimizing Supply In Agriculture.Computer Science & IT Research Journal, 5(2), 473–497. https://doi.org/10.51594/csitrj.v5i2.817
Rahim, M. K. I. A., Harahap, A. Z. M. K., Bolaji, B. H., & Ahmad, A. N. A. (2023a). Optimizing a Multi Period Deterministic Inventory Routing Problem in Agriculture Industries. Paper Asia, 39(5), 40–47. https://doi.org/10.59953/comp.by.paperasia.v39i5(b).35
Rahim, M. K. I. A., Harahap, A. Z. M. K., Bolaji, B. H., & Ahmad, A. N. A. (2023b). Optimizing a Multi Period Deterministic Inventory Routing Problem in Agriculture Industries. Paper Asia, 39(5), 40–47. https://doi.org/10.59953/comp.by.paperasia.v39i5(b).35
Taneja, A., Nair, G., Joshi, M., Sharma, S., Sharma, S., Jambrak, A. R., Roselló-Soto, E., Barba, F. J., Castagnini, J. M., Leksawasdi, N., & Phimolsiripol, Y. (2023). Artificial Intelligence: Implications for the Agri-Food Sector. In Agronomy (Vol. 13, Issue 5). MDPI. https://doi.org/10.3390/agronomy13051397
Vatin, N. I., John, V., Nangia, R., Kumar, M., & Prasanna, Y. L. (2024). Supply Chain Optimization in Industry 5.0: An Experimental Investigation Using Al. BIO Web of Conferences, 86. https://doi.org/10.1051/bioconf/20248601093