AMORPHOUS SOLIDS IN WATER AND ICE: A REVIEW

Authors

  • Navjot Kaur Department of Chemistry, RCCV Girls College, Ghaziabad. UP, India
  • Amita Department of Chemistry, Baring Union Christian College, Batala, Punjab, India

Keywords:

Amorphous solids, crystalline, Amorphous ice.

Abstract

Amorphous forms are non-crystalline materials which possess no long-range order. Amorphous solid water is most abundant form of solid water in the universe. Its saturation vapor pressure and thermodynamic properties, however, are still a topic of research by the scholars. We have investigated the saturation vapor pressure over vapor-deposited amorphous ice at temperatures between 133 and 147 K using a novel experimental method (1). The new method determines the absolute vapor pressures and the sublimation rates by measuring the mass growth rates of ice-covered nanoparticles under supersaturated water vapor conditions. It is observed that the vapor pressure of amorphous solid water is up to a factor of 3 higher than that predicted by current parameterizations, which are based in part on calorimetric measurements. The calorimetric measurements can be reconciled with data by acknowledging the formation of nano-crystalline ice as an intermediate ice phase during the crystallization of amorphous ice. The proposed value for the enthalpy of crystallization of amorphous solid water of ΔH = 2312 ± 227 J/mol, which is about 1000 J/mol higher than the current consensus. The results shine a new light on the abundance of water ice clouds on Mars and mesospheric clouds on Earth and alter our understanding of ice formation in the stratosphere.

References

Amann-Winkel, K.; Bellissent-Funel, M. C.; Bove, L. E.; Loerting, T.; Nilsson, A.; Paciaroni, A.; Schlesinger, D.; Skinner, L. 2016. X-Ray and Neutron cattering of Water. Chem. Rev. 116: 7570– 7589.

Amann-Winkel, K.; Böhmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T. 2016.Co lloquium: ater’s Controversial Glass Transitions. Rev. Mod. Phys., 88: 011002.

Amann-Winkel, K.; Böhmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T. 2016. Colloquium: ater’s Controversial Glass Transitions. Rev. Mod. Phys., 88: 011002.

Amorphous Solids, Encyclopaedia Britannica. 2019. solid solution | chemistry | BritannicaBar- Nun, A.; Dror, J.; Kochavi, E.; Laufer, D. 1987. Amorphous Water Ice and Its Ability to Trap Gases. Phys. Rev. B, 35: 2427.

Bossa, J. B.; Isokoski, K.; De Valois, M. S.; Linnartz, H. 2012. Thermal Collapse of Porous Interstellar Ice. Astron. Astrophys., 545, A82.

Bowron, D. T.; Finney, J. L.; Hallbrucker, A.; Kohl, I.; Loerting, T.; Mayer, E.; Soper, A. K. 2006. The Local and Intermediate Range Structures of the Five

Amorphous Ices at 80 K and Ambient Pressure: A Faber-Ziman and BhatiaThornton Analysis. J. Chem. Phys., 125: 194502.

Burton, E. F.; Oliver, W. F. 1935. X-Ray Diffraction Patterns of Ice. Nature, 135: 505– 506.

Burton, E. F.; Oliver, W. F. 1975. Amorphous Solid Water. Phys. Bull., 26: 211– 211.

Cartwright, J. H. E.; Escribano, B.; SainzDiaz, C. I. 2008. The Mesoscale Morphologies of Ice Films: Porous and Biomorphic Forms of Ice under Astrophysical Conditions. Astrophys. J., 687: 1406– 1414.

Cholette, F.; Zubkov, T.; Smith, R. S.; Dohnálek, Z.; Kay, B. D.; Ayotte, P. Infrared Spectroscopy and Optical Constants of Porous Amorphous Solid

Water. J. Phys. Chem. B 2009, 113, 4131–4140.

De Barros, A. L. F.; Boduch, P.; Domaracka, A.; Rothard, H.; Da Silveira, E. F. 2012. Radiolysis of Astrophysical Ices by Heavy Ion Irradiation: Destruction Cross Section Measurement. Low Temp. Phys., 38: 759–765.

Ehrenfreund, P.; Fraser, H. J.; Blum, J.;Cartwright, J. H. E.; García-Ruiz, J. M.; Hadamcik, E.; Levasseur-Regourd, A. C.; Price, S.; Prodi, F.; Sarkissian, A. 2003. Physics and Chemistry of Icy Particles in the Universe: Answers from Microgravity. Planet. Space Sci., 51: 473– 494.

Fredon, A.; Groenenboom, G. C.; Cuppen, H. M. 2021. Molecular Dynamics Simulations of Energy Dissipation on Amorphous Solid Water: Testing the

Validity of Equipartition. ACS Earth Space Chem., 5: 2032– 2041.

Gärtner, S.; Headen, T. F.; Youngs, T. G. A.; Hill, C. R.; Pascual, N.; Auriacombe, O.; Ioppolo, S.; Loerting, T.; Bowron, D. T.; Fraser, H. J. 2019. Nanoscale Structure of Amorphous Solid Water: What Determines the Porosity in ASW?. Proc. Int. Astron. Union, 15: 368– 369.

Ghormley, J. A.; Hochanadel, C. J. Amorphous Ice: Density and Reflectivity. Science 1971, 171: 62– 64.

Hagen, W.; Tielens, A. G. G. M. 1982. The Librational Region in the Spectrum of Amorphous Solid Water and Ice Ic between 10 and 140 K. Spectrochim.

Acta, Part A, 38: 1089– 1094.

Hill, C. R.; Mitterdorfer, C.; Youngs, T. G. A.; Bowron, D. T.; Fraser, H. J.; Loerting,T. 2016. Neutron Scattering Analysis of ater’s Glass ransition and Micropore Collapse in Amorphous Solid Water. Phys. Rev. Lett., 116: 215501.

Jenniskens, P.; Blake, D. F. 1994. Structural Transitions in Amorphous Water Ice and Astrophysical Implications. Science, 265: 753– 756.

Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A. 1995. High-Density Amorphous Ice, the Frost on Interstellar Grains. Astrophys. J., 455: 389– 401.

Journal of physical chemistry, ISSN : 1520-5207, Publisher: American Chemical Society, "Volatility of Amorphous Solid Water"@eng.

Kouchi, A.; Kuroda, T. 1990. Amorphization of cubic ice by ultraviolet irradiation. Nature, 344: 134– 135.

Loerting, T.; Bauer, M.; Kohl, I.; Watschinger, K.; Winkel, K.; Mayer, E. 2011. Cryoflotation: Densities of Amorphous and Crystalline Ices. J. Phys. Chem. B, 115: 14167– 14175.

May, R. A.; Smith, R. S.; Kay, B. D. 2011. Probing the Interaction of Amorphous Solid Water on a Hydrophobic Surface: Dewetting and Crystallization Kinetics of ASW on Carbon Tetrachloride. Phys. Chem. Chem. Phys., 13: 19848– 19855.

Mayer, E.; Pletzer, R. 1986. Astrophysical Implications of Amorphous Ice - A Microporous Solid. Nature, 319: 298–301.

Mejía, C.; de Barros, A. L. F.; Seperuelo Duarte, E.; da Silveira, E. F.; Dartois, E.; Domaracka, A.; Rothard, H.; Boduch, P. 2015. Compaction of Porous Ices Rich in Water by Swift Heavy Ions. Icarus, 250: 222– 229.

Mitterdorfer, C.; Bauer, M.; Youngs, T. G. A.; Bowron, D. T.; Hill, C. R.; Fraser, H. J.; Finney, J. L.; Loerting, T. 2014. SmallAngle Neutron Scattering Study of

Micropore Collapse in Amorphous Solid Water. Phys. Chem. Chem. Phys., 16:16013– 16020.

Noble, J. A.; Cuppen, H. M.; Coussan, S.; Redlich, B.; Ioppolo, S. 2020. Infrared Resonant Vibrationally Induced Restructuring of Amorphous Solid Water.

J. Phys. Chem. C, 124: 20864– 20873.

Noble, J. A.; Martin, C.; Fraser, H. J.; Roubin, P.; Coussan, S. 2014. Unveiling the Surface Structure of Amorphous Solid Water via Selective Infrared Irradiation of OH Stretching Modes. J. Phys. Chem. Lett., 5: 826– 829.

Oba, Y.; Miyauchi, N.; Hidaka, H.; Chigai, T.; Watanabe, N.; Kouchi, A. 2009. Formation of Compact Amorphous H2O Ice by Codeposition of Hydrogen Atoms with Oxygen Molecules on Grain Surfaces. Astrophys. J., 701: 464– 470.

Raut, U.; Famá, M.; Loeffler, M. J.; Baragiola, R. A. 2008. Cosmic Ray Compaction of Porous Interstellar Ices. Astrophys. J., 687: 1070– 1074.

Shalit, A.; Perakis, F.; Hamm, P. 2014. Communication: Disorder-Suppressed Vibrational Relaxation in VaporDeposited High-Density Amorphous Ice.

J. Chem. Phys., 140: 151102.

Shephard, J. J.; Evans, J. S. O.; Salzmann, C. G. 2013. Structural Relaxation of LowDensity Amorphous Ice upon Thermal Annealing. J. Phys. Chem. Lett., 4: 3672–3676.

Smith, R. S.; Huang, C.; Kay, B. D. 1997. Evidence for Molecular Translational Diffusion during the Crystallization of Amorphous Solid Water. J. Phys. Chem. B, 101: 6123– 6126.

Smith, R. S.; Kay, B. D. 1999. The Existence of Supercooled Liquid Water at 150 K. Nature, 398: 788– 791.

Smith, R. S.; Matthiesen, J.; Knox, J.; Kay, B. D. 2011. Crystallization Kinetics and Excess Free Energy of H2O and D2O Nanoscale Films of Amorphous Solid Water. J. Phys. Chem. A, 115: 5908–5917.

Smith, R. S.; Yuan, C.; Petrik, N. G.; Kimmel, G. A.; Kay, B. D. 2019. Crystallization Growth Rates and Front Propagation in Amorphous Solid Water Films. J. Chem. Phys., 214703.

Smith, R. S.; Zubkov, T.; Dohnálek, Z.; Kay, B. D. 2009. The Effect of the Incident Collision Energy on the Porosity of Vapor-Deposited Amorphous Solid Water Films. J. Phys. Chem. B, 113: 4000–4007.

Stevenson, K. P.; Kimmel, G. A.; Dohnálek, Z.; Smith, R. S.; Kay, B. D. 1999. Controlling the Morphology of Amorphous Solid Water. Science, 283:1505– 1507.

Tulk, C. A.; Benmore, C. J.; Urquidi, J.; Klug, D. D.; Neuefeind, J.; Tomberli, B.; Egelstaff, P. A. 2002. Structural Studies of Several Distinct Metastable Forms of Amorphous Ice. Science, 297: 1320–1323.

Venkatesh, C. G.; Rice, S. A.; Narten, A. H. 1974. Amorphous Solid Water: An x-Ray Diffraction Study. Science, 186: 927– 928.

Yuan, C.; Smith, R. S.; Kay, B. D. 2017. Communication: Distinguishing between Bulk and Interface-Enhanced Crystallization in Nanoscale Films of Amorphous Solid Water. J. Chem. Phys., 146: 031102.

Downloads

Published

2021-12-31

How to Cite

Navjot Kaur, & Amita. (2021). AMORPHOUS SOLIDS IN WATER AND ICE: A REVIEW. Journal Punjab Academy of Sciences, 21, 47–57. Retrieved from https://jpas.in/index.php/home/article/view/22