THICKNESS MEASUREMENTS OF MULTI-LAYER SAMPLES USING PHOTON-ATOM INTERACTIONS IN X-RAY ENERGY REGION

Authors

  • V. Singh Sri Guru Gobind Singh College, Sector-26, Chandigarh-160019, India
  • Kailash Department of Physics, Panjab University, Chandigarh-160014, India
  • J.S. Shahi Department of Physics, Panjab University, Chandigarh-160014, India
  • D. Mehta2 Department of Physics, Panjab University, Chandigarh-160014, India

Keywords:

Photon-atom interaction, multilayer samples, thickness, X-rays, energy-dispersive X-ray detection

Abstract

The present work reports a method for thickness measurements of multi-layer samples using energy dispersive photon-atom interaction setup involving 59.5 keV g-rays from 241Am radioactive source. The inelastic information has been used to measure thickness of polymer (mylar/polypropylene) films over a wide range 100 mg/cm2 - 600 mg/cm2 (~700 - 4200,000 Å). The setup can be further improved for lower thickness ~few Å using in-vacuo measurements involving low-energy photons ~10 keV. The measurements were also extended to determine thickness of different layers of Cu and Pb-Sn alloy foils sandwiched between polymer films using the characteristic x-ray, elastic- and inelastic-scattering information. The experimental results recommend the use of reported methodology for thickness measurement of low-Z materials deposited on a thick substrate for material characterization. Various aspects of interaction of X-ray photons (below ~100 keV) with matter, i.e., about characteristic X-ray photons, elastic- and inelastic-scattered photons have been discussed for the sample elemental/thickness analysis applications.

 

References

Alrakabi, M., Kumar, S., Sharma, V., Singh, G. and Mehta, D. 2013. Alignment of L3 subshell vacancy states in Au, Bi, Th and U following photoionisation and effect of external magnetic field, Eur. Phys. J. D 67: 99 (8 pages).

Browne, E., Firestone, R.B. and Shirley, V.S. (Eds.). 1986. Table of Radioactive Isotopes, Wiley, New York.

Carapelle, A. , Fleury-Frenette, K., Collette, J.P., Garnir, H.P. and Harlet, P. 2007. Portable X-ray fluorescence spectrometer for coating thickness measurement, Rev. Sci. Instrum. 78: 123-125.

Draxler, M., Zoister, S., Kastner, F., Bergsmann, H. and Bauer, P. 2002. Characterization of ultrathin Cr layers on PET by RBS and XRF, Surf. Interface Anal. 34: 763-766.

Ebel, M.F., Svagera, R., Lindner, M., Praxmarer, N., Hager, C. and Ebel, H. 1999. Investigations of thin layers by TEY, XRF, EPMA and XPS - a comparison of X-ray analytical methods, Adv. X Ray Anal. 41: 62-75.

Gardner, R. P., Metwally, W. A. and Shehata, A. 2004. A semi-empirical model for a 90Sr beta-particle transmission thickness gauge for aluminum alloys, Nucl. Instrum. Methods B 213: 357-363.

Hobbis, A. and Aruleswaran, A. 2005. Non-contact thickness gauging of aluminium strip using EMAT technology. Springer Series in Measurement Science and Technology, Huang, S. and Wang, S., New Technologies in Electromagnetic Non-Destructive Testing, Nondestr. Test. Eval. 20(4): 211–220.

Hubbell, J.H., Veigele, W.J., Briggs, E.A., Brown, R.T., Cromer, D.T., Howerton, R.J. 1975. Atomic form factors, incoherent scattering functions, and photon scattering cross sections, J. Phys. Chem. Ref. Data 4: 471, ibid 1977. J. Phys. Chem. Ref. Data 6: 615(E).

Hussein, E. M. A. 2003. Handbook on Radiation Probing, Gauging, Imaging, and Analysis, Kluwer Academic Publishers, Dordrecht.

Johansen, G. A. and Jackson, P. 2004. Radioisotope gauges for industrial process measurements, John Wiley and Sons, Ltd., https://doi.org/10.1002/0470021098.

Kissel, L., Zhou, B., Roy, S.C., Sen Gupta, S.K. and Pratt, R.H. 1995. The validity of form-factor, modified-form-factor and anomalous-scattering-factor approximations in elastic scattering calculations, Acta Cryst. A. 51: 271.

Kissel, L. 2000. Radiat. Phys. Chem., 59: 185-200.

Lhotka, J., Kuzel, R., Capuccio, G. and Valvoda, D. 2001. Thickness determination of thin polycrystalline film by grazing incidence X-ray diffraction, Surf. Coat. Technol.184: 95–100.

Mahajan, R., Abhilash, S.R. , Sharma, P. , Kaur, G., Kabiraj, D., Duggal, H., Mehta, D. and Behera, B. R. 2018. Thin targets for nuclear reaction studies using NAND facility, Vacuum 150: 203-206.

Martinez V.D., Hidalgo M. and Barrea, R.A. 2000. X-ray fluorescence analysis by the fundamental parameters method without explicit knowledge of the excitation beam spectrum, X- ray Spectrometry 29: 245-248.

Mcfarlane, N. J. B., Speller, R.D., Bull, C. R. and Tillett, R. D. 2003. Detection of Bone Fragments in Chicken Meat using X-ray Backscatter , Biosystems Engineering 85(2):185-199

Molt K. and Schramm, R. 1999. Determination of light elements in organic liquid matrices by principal component regression in EDXRS using backscattered radiation, X-ray Spectrometry 28: 59-63.

Rajesh, K. K., Musthafa, M. M., Hosamani, M. M., Shamlath, A., Abhilash, S. R.

and Kabiraj, D. 2017. Fabrication of carbon sandwiched thin targets of 138Ba by evaporation, Technique, Vacuum 141: 230-234.

Ribeiro, J. M. , Correia, F. C., Salvador, P. B., Rebouta, L., Alves, L. C., Alves, E., Barradas, N. P., Mendes, A. and Tavares, C.J. 2019. Compositional analysis by RBS, XPS and EDX of ZnO: Al,Bi and ZnO:Ga, Bi thin films deposited by d.c. magnetron sputtering, Vacuum 161: 268-275.

Shahi, J.S., Kumar, A., Mehta, D., Puri, S., Garg, M. L. and Singh, N. 2001. Inelastic scattering of 59.54 keV photons by elements with 13  Z  82, Nucl. Instr. And Meth. B 179: 15-23.

Shahi, J.S., Ph.D. 2000. Thesis, X-ray Photon Scattering cross section measurements and application in Elemental Analysis using EDXRF technique, Panjab University, India.

Sharma, V., Kumar, S., Mehta, D. and Singh, N. 2008. L-subshell vacancy decay processes for elements with 52≤Z≤57 following ionization using Mn Kα x rays Phys. Rev. 78: 012507.

Sowerby, B. D. and Rogers, C.A. 2005. Gamma-ray density and thickness gauges using ultra-low activity radioisotope sources, Appl. Radiat. Isot. 63: 789-793.

Storm, E. and Israel, H.I. 1970. Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100, Nucl. Data Tables 7: 565-681.

Suzukia, K., Tsuchiya, B., Yasuda, K. and Nakata Y., 2020. Light element analysis of ceramics using in-air ERDA and TOF-ERDA, Nucl. Intrum. Meth. B 478: 169-173.

Tiwary, S.S., Sharma, H.P., Chakraborty, S., Majumder, C., Singh, G., Mehta, D. , Kumar, S., Abhilash, S.R., Kabiraj, D., Singh, R.P. and Muralithar, S. 2019. Fabrication of isotopic 127I target from potassium iodide for heavy ion nuclear reactions, Vacuum 167: 336-339.

Queralt, I., Ibañez, J. , Marguí, E. and Pujol, J. 2010, Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy, Spectrochimica Acta Part B 65: 583–586.

Upmanyu, A. K., Kailash, Kapil, A. , Mehta, D. and Kumar, S. 2021. Thickness measurement of low-Z films fabricated on thick substrate using EDXRF technique Vacuum 183: 109852 (6 pages).

Vogt, C. and Dargel, R. 2005. Determination of layer thickness with μXRF, Appl. Surf. Sci. 252: 53-56.

Downloads

Published

2022-12-31

How to Cite

V. Singh, Kailash, J.S. Shahi, & D. Mehta2. (2022). THICKNESS MEASUREMENTS OF MULTI-LAYER SAMPLES USING PHOTON-ATOM INTERACTIONS IN X-RAY ENERGY REGION. Journal Punjab Academy of Sciences, 22, 41–52. Retrieved from https://jpas.in/index.php/home/article/view/42