Facial Expression Recognition with Local Binary Pattern in Machine Learning :A Review
Keywords:
Facial expression, Expression-specific local binarypattern,Class-regularized locality preserving projection,Dimensionality reduction, Feature extractionAbstract
Automaticallyanalyzingfacialexpressionsisanintriguingandchallengingproblemwhichhassignificantapplications in numerous fields, including data-driven animationand human–computer interaction. An essential step in successfullyrecognizingfacialexpressionsisobtaininganaccuratefacialrepresentation from original face image. For person-independentfacial expression recognition, in this paper we have local feature-based facial representation and local binary patterns(LBP) techniques. On a number of databases, comprehensive analysis hasbeen presented on various machine-learning techniques for facialrecognition.LBPFeatureextractiontechniquehasbeendemonstrated to recognize facial expressions.Further, to extractthe most discriminating localbinary pattern features a boosted-LBP feature with support vector machine classifiers has been suggested which result sin best face recognition performance accuracy.Additionally,we have describedthe investigations oflow-resolution facial expression recognition withLBP feature extraction which is a crucial issue which have not received earlier consideration.
References
Dalvi, C. 2021. A survey of AI-based facial emotion recognition: Features ML &DLtechniques,age-wisedatasetsandfuturedirections,IEEEAccess,9:165809-165840.
Mellouk, W. 2020. Facial emotion recognition using deeplearning:reviewandinsights. ProcediaComputer Science,75,689-694,
Step5:Lowdimensionfacespaceconstruction:[C,S,L]RehmanK.A.2022.Facialemotionrecognitionusingconventionalmachine
=princomp(img, ’econ’);EigenRange=[1,30]
DefinewhichEigenvalueswillbeselectedC= C(: EigenRange)
Step6:Readtestimage(queryimage)andprojectonfacespace
Img=zeros(imageSize(1)*(imageSize(2),numTestImage));
Step7:ProjectedTest=img*C;
learninganddeeplearningmethods:currentachievements,analysisandremainingchallenges,InformationMDPI,13:2-17.
Borgalli, R. 2022. Deep Learning Framework forFacial Emotion RecognitionusingCNNArchitectures,InternationalConferenceonElectronicsandRenewableSystems,1777-1784.
Yonbin G. 2015. Deep learninig of EEG signals foremotion recognition, IEEEInternationalConferenceonMultimedia&ExpoWorkshops(ICMEW),1-5,
AkritiJ.2020.Facial emotion detection using deep learning, International conference for emerging technology(INCET),1-5.
Step8:CalculationofdistancefromNeutralMeanNeutralLu,X.2022.Deeplearningbasedemotionrecognitionandvisualizationoffigural
=mean (S (Neutral Images, Eigen Range), 2);Step 9: Repeat following step until End of imageDat2Project=1: num Test Image
Test Image=Projected Test(Dat2Project,);
representation,FrontiersinPsychology,12:818-833.
Kumar, A. P.2022. Optimalfacialfeaturebasedemotionalrecognitionusingdeeplearningalgorithm,ComputationalIntelligence and Neuroscience.
GaddamD.K.2022.Human facial emotion detection using deep learning, In ICDSMLA2020:Proceedings of the 2nd International Conference on
Data, MachineLearningandApplications,1417-1427.
ParasJ.2021.FaceEmotionDetectionUsingDeepLearning,FifthInternational Conference on I-SMAC (IoT in Social, Mobile, Analytics andCloud),517- 522.
Lalitha S. K. 2021. A Deep Learning Model for Face Expression Detection,InternationalConferenceonRecentTrendsonElectronics,Information,Communication&Technology(RTEICT),647-650.
Naik,N. 2018.Hand-over-Face Gesture based FacialEmotion Recognitionusing Deep Learning, International Conference on Circuits and Systems inDigitalEnterpriseTechnology(ICCSDET),1-7.
Singh, S. K, 2022. Deep Learning and Machine Learning based Facial EmotionDetectionusingCNN,9thInternationalConferenceonComputing forSustainableGlobal Development(INDIACom),530-535.
Brintha,N.C.2022.RealtimeFacialEmotionDetectionUsingMachineLearning,InternationalConferenceonInnovativeComputing,IntelligentCommunicationandSmartElectricalSystems (ICSES),1-5.
Harsha Sai, V. S. 2021. Image classification for user feedback using DeepLearningTechniques,5thInternationalConferenceonComputingMethodologies and Communication(ICCMC),1392- 1396.
AkritiJ.2020.Facialemotiondetectionusingdeeplearning,Internationalconferencefor emerging technology(INCET),1-5.
Asbaily A. 2022. Facial Emotion Recognition Based on Deep Learning, IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques