Facial Expression Recognition with Local Binary Pattern in Machine Learning :A Review

Authors

  • Lakhvir Kaur
  • Kulwinder Singh
  • Malhi, Beant

Keywords:

Facial expression, Expression-specific local binarypattern,Class-regularized locality preserving projection,Dimensionality reduction, Feature extraction

Abstract

Automaticallyanalyzingfacialexpressionsisanintriguingandchallengingproblemwhichhassignificantapplications in numerous fields, including data-driven animationand human–computer interaction. An essential step in successfullyrecognizingfacialexpressionsisobtaininganaccuratefacialrepresentation from original face image. For person-independentfacial expression recognition, in this paper we have local feature-based facial representation and local binary patterns(LBP) techniques. On a number of databases, comprehensive analysis hasbeen presented on various machine-learning techniques for facialrecognition.LBPFeatureextractiontechniquehasbeendemonstrated to recognize facial expressions.Further, to extractthe most discriminating localbinary pattern features a boosted-LBP feature with support vector machine classifiers has been suggested which result sin best face recognition performance accuracy.Additionally,we have describedthe investigations oflow-resolution facial expression recognition withLBP feature extraction which is a crucial issue which have not received earlier consideration.

References

Dalvi, C. 2021. A survey of AI-based facial emotion recognition: Features ML &DLtechniques,age-wisedatasetsandfuturedirections,IEEEAccess,9:165809-165840.

Mellouk, W. 2020. Facial emotion recognition using deeplearning:reviewandinsights. ProcediaComputer Science,75,689-694,

Step5:Lowdimensionfacespaceconstruction:[C,S,L]RehmanK.A.2022.Facialemotionrecognitionusingconventionalmachine

=princomp(img, ’econ’);EigenRange=[1,30]

DefinewhichEigenvalueswillbeselectedC= C(: EigenRange)

Step6:Readtestimage(queryimage)andprojectonfacespace

Img=zeros(imageSize(1)*(imageSize(2),numTestImage));

Step7:ProjectedTest=img*C;

learninganddeeplearningmethods:currentachievements,analysisandremainingchallenges,InformationMDPI,13:2-17.

Borgalli, R. 2022. Deep Learning Framework forFacial Emotion RecognitionusingCNNArchitectures,InternationalConferenceonElectronicsandRenewableSystems,1777-1784.

Yonbin G. 2015. Deep learninig of EEG signals foremotion recognition, IEEEInternationalConferenceonMultimedia&ExpoWorkshops(ICMEW),1-5,

AkritiJ.2020.Facial emotion detection using deep learning, International conference for emerging technology(INCET),1-5.

Step8:CalculationofdistancefromNeutralMeanNeutralLu,X.2022.Deeplearningbasedemotionrecognitionandvisualizationoffigural

=mean (S (Neutral Images, Eigen Range), 2);Step 9: Repeat following step until End of imageDat2Project=1: num Test Image

Test Image=Projected Test(Dat2Project,);

representation,FrontiersinPsychology,12:818-833.

Kumar, A. P.2022. Optimalfacialfeaturebasedemotionalrecognitionusingdeeplearningalgorithm,ComputationalIntelligence and Neuroscience.

GaddamD.K.2022.Human facial emotion detection using deep learning, In ICDSMLA2020:Proceedings of the 2nd International Conference on

Data, MachineLearningandApplications,1417-1427.

ParasJ.2021.FaceEmotionDetectionUsingDeepLearning,FifthInternational Conference on I-SMAC (IoT in Social, Mobile, Analytics andCloud),517- 522.

Lalitha S. K. 2021. A Deep Learning Model for Face Expression Detection,InternationalConferenceonRecentTrendsonElectronics,Information,Communication&Technology(RTEICT),647-650.

Naik,N. 2018.Hand-over-Face Gesture based FacialEmotion Recognitionusing Deep Learning, International Conference on Circuits and Systems inDigitalEnterpriseTechnology(ICCSDET),1-7.

Singh, S. K, 2022. Deep Learning and Machine Learning based Facial EmotionDetectionusingCNN,9thInternationalConferenceonComputing forSustainableGlobal Development(INDIACom),530-535.

Brintha,N.C.2022.RealtimeFacialEmotionDetectionUsingMachineLearning,InternationalConferenceonInnovativeComputing,IntelligentCommunicationandSmartElectricalSystems (ICSES),1-5.

Harsha Sai, V. S. 2021. Image classification for user feedback using DeepLearningTechniques,5thInternationalConferenceonComputingMethodologies and Communication(ICCMC),1392- 1396.

AkritiJ.2020.Facialemotiondetectionusingdeeplearning,Internationalconferencefor emerging technology(INCET),1-5.

Asbaily A. 2022. Facial Emotion Recognition Based on Deep Learning, IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques

Downloads

Published

2024-02-28

How to Cite

Lakhvir Kaur, Kulwinder Singh, & Malhi, Beant. (2024). Facial Expression Recognition with Local Binary Pattern in Machine Learning :A Review. Journal Punjab Academy of Sciences, 23, 280–289. Retrieved from https://jpas.in/index.php/home/article/view/77